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Abstract. Interionic potentials for the cubic perovskite crystals KMnF3 and KZnF3 are 
derived and used in calculations of the configurational energies of intrinsic and substitu- 
tional defects. The pressure dependences of soft-mode frequencies and elastic constants 
are investigated as well as the temperature dependence of the former. Structural, elastic 
and vibrational properties in the tetragonal phase are estimated. Some results are obtained 
which probe the effects of impurities on displacive phase transitions. 

1. Introduction 

Over the past few years considerable progress has been made in modelling the static 
and dynamic properties of impure crystals which can be considered as mixtures of 
members drawn from particular families of ionic crystals, such as alkali halides and 
transition metal oxides. These advances have been made possible by the development 
of reasonably realistic consistent potential models for the families and the parallel 
development of general purpose computer codes for solving problems in defect statics, 
such as relaxations around impurities and the calculation of the energies of these relaxed 
configurations, and, more recently, in defect dynamics where modes of vibration of 
impurity systems may now be routinely analysed. 

In this paper we attempt to apply this approach to two cubic perovskites, KMnF, 
and KZnF,. The main distinction of interest between these two crystals is that the 
former undergoes a displacive structural phase transition to a tetragonal form at 186 K 
whereas the latter remains cubic down to the lowest temperatures. The phase transition 
in KMnF, is generally believed to be second order although there is some experimental 
evidence (see, e.g., Shirane et a1 1970) that it may be weakly first order. There have 
been several studies of these crystals, notably the investigation of defect statics in 
KMnF, by Kilner (1981) and the inelastic neutron scattering measurements on both 
crystals together with extensive analysis in terms of force constant models by Lehner 
et a1 (1982). Our development of potentials in the next section follows the work of 
Kilner fairly closely with the additional constraints imposed by the consistency which 
we require for consideration of the substituted systems KMnF, :Zn and KZnF, :Mn. 
Similar constraints are imposed in some of the lattice dynamical models investigated 
by Lehner et a1 but, since these employ force constants rather than being derived from 
potential models, a unified approach to both defect statics and defect dynamics is not 
possible. 
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In 93 we present the results of some room-temperature defect energy calculations 
for both crystals based on the potentials obtained in 92. We have recalculated the cases 
considered earlier by Kilner (1981) for KMnF, and find that in most cases there is 
little change of significance between the results produced from our potential and those 
from his. Parallel calculations for KZnF, are also presented together with some results 
for the substitution of Zn in KMnF, and Mn in KZnF,. Volumes of substitution are 
obtained and interpreted in terms of departures from Vegard's rule along the lines of 
a similar study of mixed alkali halides by Cox and Sangster (1985). 

In 94 we consider the dynamics of the pure crystals, in particular the dependence 
of the soft-mode frequencies on temperature and pressure. Our models show quali- 
tatively the main distinction between the two crystals, the onset of mode instability 
for KMnF, but not for KZnF,. Calculations of structural, elastic and vibrational 
properties of KMnF, in its tetragonal phase are presented in the following section. In 
96 we investigate possible roles of impurities in either quenching the phase transition 
in KMnF, or promoting it in KZnF,. We tentatively conclude that the presence of 
low concentrations of Mn impurities in KZnF, does not result in the crystal having a 
non-cubic phase but that Zn impurities at concentrations up to 10% in KMnF, lower 
the pressure at which a transition to the tetragonal phase is induced. 

2. Interatomic potentials for KMnF, and KZnF, 

In order to reduce the number of free parameters in potential models for these 
fluoride perovskites it is normal to transfer potentials for the K-F and F-F short- 
range interactions from models for alkali halides. (The K-K interaction might also 
be taken from these sources but, in view of the large separation of K ions in the 
perovskite structure, these interactions are generally ignored.) Similarly the shell 
model polarisation parameters, that is, shell charges and isotropic shell-core force 
constants, for the K and F ions found in work on the alkali fluorides may be used 
in the perovskites. To complete the description, parameters for some assumed form 
for the X-F (X = Mn or Zn) interaction and the polarisation parameters for X are 
required: again X-X short-range interactions can be ignored on the grounds of the 
large distances between these ions. Values for these relatively few parameters may 
be found by imposing stability constraints and fitting to available experimental data 
such as a selection from elastic constants, dielectric constants and phonon dispersion 
relations. Essentially this is the approach adopted by Kilner (1981) for KMnF, and 
by Lehner et al (1982) for both KMnF, and KZnF,. It will also be adopted here. 
Comparisons with these other potential models will be made. 

There is a considerable choice of alkali and alkaline earth halide models from which 
to select the K-F and F-F terms. To keep open the possibility of modelling mixed 
systems it is necessary to have a single description of interactions which are common 
to the two pure crystals. Initially the model of Sangster and Atwood (1978) was tried 
for K-F and F-F interactions together with their polarisabilities for F and K ions, zF 
and L Y ~ .  The shell charges Y, and Y, were left as free parameters, the shell-core force 
constants being determined by the relations 

which define the free-ion polarisabilities. V is the volume of the unit cell, and the force 
constants ki are scaled dimensionless quantities, the unscaled constants being (e2/ V )  ki 
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in the usual way. The ionic charges of K and F ions, 2, and ZF, were also free 
parameters but taken to be the same in both KMnF, and KZnF,. The common ionic 
charge for Mn and Zn (Z,) is given by charge neutrality. Thus four free parameters 
are used in the description of common interactions. Additionally each crystal has four 
further parameters, two for the interaction between X and F, which is assumed to have 
the simple Born-Mayer form 

&F-F(r) = exp (-r/P) (2) 
and two for the polarisation parameters ax and Y,. 

by imposing the equilibrium conditions 
We may remove two of these twelve parameters for modelling the pair of crystals 

where ro is the equilibrium nearest-neighbour X-F distance, i.e. half the lattice constant 
(U& and aM is the Madelung constant defined so that the electrostatic energy per unit 
cell is e2xM/ao. Cowley (1964) gives the following expression for the Madelung constant: 

EM = 1.259 50 ( Z i  + Z:) + 4.571 09 Z: + 0.79 260 ZKZ, 

- 0.667 17 Z x Z ,  + 0.483 62 ZKZX (4) 

(although he states, incorrectly, that the electrostatic energy per unit cell is then 
2e2aM /ao) .  

The remaining parameters were then adjusted to give a best fit to the dispersion 
curves obtained from neutron scattering experiments by Lehner et a1 (1982). Apart 
from the reduction in the number of free parameters, the essential differences between 
our model and the model SM1 of Lehner et a1 are that we use only central potentials 
satisfying the equilibrium condition and that we insist on a unique description of the 
elements common to the two crystals. Although our fit to the dispersion for KZnF, was 
quite satisfactory, the results for KMnF, were extremely bad. 

Dispersion curves produced by models are particularly sensitive to the choice of 
F-F interaction despite the fact that the force constants from this interaction are small 
compared with those from the X-F interaction. Most model F-F potentials have a 
minimum close to the separation between fluorine ions in the perovskites (2.96 8, in 
KMnF,, 2.87 8, in KZnF,). The minimum in the spline potential of Catlow et a1 
(1977b) is placed at 2.726 A, that of Catlow et a1 (1977a) at 2.833 A. One of our 
interests in this paper will be in studying the behaviour of low-frequency modes when 
pressures are imposed on the crystals. It is clear that the F-F force constants will 
depend very sensitively on pressure. 

We found that using the Buckingham potential of Sangster and Atwood (1978) 
C D  4 ( ~ )  = A exp(-r/p) - - - - 
r6 r8 

instead of the K-F Born-Mayer potential and that replacing the F-F potential by the 
spline potential of Catlow et a1 (1977b), 

( A exP(-r/P) r < rb 
fifth-order polynomial rb < r < r, 

r, < r < r, third-order polynomial 
( -C/r6 r, < r 
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while retaining the other potentials and polarisabilities as above, resulted in greatly 
improved fits to the dispersion relations. The parameters of our model, including 
those taken from other potentials as well as those fitted to dispersion curves, are given 
in table 1. The ten coefficients required to specify the two polynomials for the F-F 
interaction are determined by continuity at the knots of the potential and its first and 
second derivatives together with the siting of one knot at the minimum r,. In figure 
1 we show the phonon dispersion from our model together with measured frequencies 
from Lehner et al (1982). 

Table 1. Model potential parameters for KMnF3 and KZnF3, satisfying equilibrium 
condition for lattice constants 4.19 8, and 4.054 8, respectively. 
(a) Charges (in units of lei) and polarisation force constants (in units of eV k2), cf 
equation (1). 

X Z X  YX kX 

K 8.62 -7.655 797.579 
F 1.639 33 -2.64 102.920 
Mn 8.167 -6.13 1964.670 
Zn 3.429 -1.392 608.644 

( b )  Buckingham potentials, cf equation (5) 

Mn-F 1654.780 0.275 91 0.0 0.0 
Zn-F 1655.530 0.265 16 0.0 0.0 
K-F 2693.740 0.284 40 29.18 26.49 

~~ 

(c) Spline potential for the short-range F-F interaction, cf equation (6). 

1127.70 0.2753 15.83 2.000 2.726 3.031 

The procedure adopted by Kilner (1981) in establishing his potentials for KMnF, 
was broadly similar. The equilibrium condition is not satisfied exactly as is evident 
from the elastic constants which Kilner derives from his potentials and which show a 
small departure from the Cauchy relation. We have calculated the dispersion relation 
in the [I  111 direction from Kilner’s potential and find that near the R point the modes 
are unstable. After some modifications to the Mn-F potential to restore equilibrium, 
these mode instabilities are removed. 

Cowley (1964) gives expressions for the elastic constants in terms of force constants. 
(As in the definition of the Madelung constant, his expressions are only correct if his 
r is taken as the full lattice spacing U,,.) In table 2 we give the values obtained from 
our model with, for comparison, results from measurements by Aleksandrov et a1 
(1966) for KMnF, and by Gesland et a1 (1972) for KZnF,. The model values have to 
satisfy the Cauchy relation, C,, = C44. The values found are in reasonable agreement 
with the average f(C,, + C,,), and also the calculated constants C,, are close to 
those determined experimentally. Of course, since our fits to dispersion relations have 
included acoustic branches, a fair level of agreement with elastic constants is ensured. 



Simulation of KMnF,  and KZnF3  

(0) I I 
i 

l6 1 I I  

r X r M 

I- - 
% 12 
c 01 

W e - 
c 
0 .e 
a 

4 

0 
r x r  fl 

7805 

r R 
[ I 1 1 1  

r R 
[ 1 1 1 1  

Figure 1. Dispersion relations for (a) KMnF3 and ( b )  KZnF3. Full (broken) curves are 
theoretical longitudinal (transverse) phonon branches. Triangles and circles are measured 
longitudinal and transverse phonons from Lehner er al (1982), Gesi er a/ (1972) and 
Rousseau er al (1981). 

The table also gives the static and high-frequency dielectric constants evaluated from 
the potential models by the standard procedures detailed by Cowley (1962); in fact we 
used the PLUTO code (Norgett 1974), which follows the procedures in our calculations. 
Measured constants from Perry and Young (1967) are quoted for comparison; the 
alternative higher measured E,, for KMnF, is from Gesi and Ozawa (1973). 

By repeating the calculations of the elastic constants at different lattice param- 
eters, estimates of dC,/da can be obtained and, hence, using the model isothermal 
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Table 2. Perfect lattice properties obtained experimentally and from the model potential. 

Elastic constants Dielectric constants 

C11 (GPa) C12 (GPa) C u  (GPa) Ref. EO E, Ref. 

KMnF3 

Experiment 115.0 39.5 27.4 a 9.02 2.10 c 
9.72 d 

Model 142.7 31.2 31.2 10.77 1.94 

KZnF3 

Experiment 134.5 52.7 38.1 b 7.78 2.34 c 
Model 160.7 43.9 43.9 8.14 1.98 

a Aleksandrov et al (1966). 
Gesland et al (1972). 
Perry and Young (1967). 
Gesi and Ozawa (1973). 

compressibility, 

values for the pressure derivatives of the elastic constants. In table 3 values at room 
temperature for KMnF, are given together with recent experimental results by Cao 
and Barsch (1988). Large parts of the discrepancies arise from differences between 
theory and experiment for the elastic constants themselves. 

Table 3. Pressure derivatives of isothermal elastic constants for KMnF3 at room tempera- 
ture. 

Model 9.77 1.59 1.07 
Experimenta 5.82 3.29 0.28 

a Cao and Barsch (1988) 

3. Calculations of defect energies 

We have used our model potential in calculations of the energies of a variety of 
defect configurations in KMnF, and KZnF,. The calculations were performed using 
the HADES code (Norgett 1974, 1977). We have obtained results for all the intrinsic 
defect configurations considered by Kilner (1981). Since both the defect geometries 
and computational details are fully described in Kilner’s paper, it will suffice to present 
our results in a form which closely follows that used by Kilner; this is done in 
table 4. For KMnF, we list in parentheses the corresponding results from Kilner’s 
work. KZnF, was not considered by him. 

The agreement between our calculations and those of Kilner for KMnF, is fairly 
close. In all cases our formation energies are lower than Kilner’s, and this is most 
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Table 4. Intrinsic defect energies (eV) for KMnF3 and KZnF3. Values in brackets are from 
Kilner (1981). 

7807 

KMnF3 KZnF3 

(a) Formation energies for single defects 

Mn/Zn vacancy 
K vacancy 
F vacancy 
Mn/Zn interstitial 
K interstitial 
F interstitial 
F interstitialcy 
(Cohesive energy/cell 

23.29 
5.30 
5.67 

-16.40 
-1.58 
-2.72 
-2.98 

-37.91 

24.47 
5.53 
6.07 

- 17.06 
-0.69 
-1.84 
-2.18 

(-36.47) -39.39) 

(b)  Formation energy of neutral defects 

Anion Frenkel 
(i) vacancy + interstitial 2.95 (2.9 1 ) 4.23 
(ii) vacancy + interstitialcy 2.69 (2.79) 3.89 

K Frenkel 3.72 (3.92) 4.84 
Mn/Zn Frenkel 6.89 (8.36) 7.41 
Schottky quintet 7.69 (7.91) 8.82 

(c) Activation energies 

K vacancy 
F vacancy 
F interstitial 

1.57 (1.63) 2.04 
0.42 (0.41) 0.54 
0.26 (0.12) 0.34 

marked for the cation Frenkel defect formation energies. In agreement with Kilner, we 
find that a (100) dumbell fluorine interstitialcy is more stable than an isolated fluorine 
interstitial, in our calculations by 0.27 eV. The most favourable transport process is 
fluorine interstitial migration by the interstitialcy mechanism taking the saddle point 
as the isolated interstitial configuration as in figure 2. 

OMn or Zn m O F  .F vacancy 

E i I l  configuration 

Saddle 
point 

Figure 2. Fluorine interstitial migration by an interstitialcy mechanism. 

Our conclusions on intrinsic defect formation and activation energies in KZnF, are 
very similar to those for KMnF,. All energies are slightly higher in this case, that for 
anion Frenkel defect formation being perhaps the most significant. 
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We have also calculated the energies for the substitutions KMnF, :Zn and 
KZnF,:Mn. For these calculations it is essential that the potential models for the 
two host crystals use the same specifications for all common interactions, a feature 
which has been incorporated in our potentials. By investigating the dependence of 
these formation energies on lattice parameter, a, the volume of formation may be 
estimated by using the result discussed by Gillan (1981), 

where KT is the isothermal compressibility of the host crystal given by equation (7). 
For consistency it is important to use elastic constants calculated from the model rather 
than experimental values. If, for both substitutions, R, is equal to A V ,  the difference 
in unit cell volumes for KMnF, and KZnF, (with the appropriate sign in each case), 
then the binary system KMn,Zn,-,F, should satisfy Vegard’s rule (Vegard 1921) in the 
form that states that the volume per formula unit scales linearly with concentration x. 

Table 5. Energies and volumes of substitution in KMnF3 and KZnF3. 

KMnF3 :Zn KZnF3 :Mn 

Er (ev) -1.467 +1.494 
f2f (A3) -7.502 +6.879 
A V  (A3) -6.933 +6.933 

Our calculations of energies and volumes of substitution are given in table 5 
together with A V .  It can be seen that only minor departures from the predictions of 
Vegard’s rule are found. Since the volumes of formation set the extrema1 slopes of a 
plot of volume against concentration, our results indicate that such a plot would lie 
below the Vegard straight line. In a similar analysis of mixed alkali halides, Cox and 
Sangster (1985) found the opposite behaviour. When x-ray scattering measurements of 
average spacings in mixed crystals are available they are generally plotted as deviations 
from an alternative version of Vegard’s rule in which the linear spacing (rather than 
the volume) is taken to scale with concentration. In figure 3 we plot an estimate of 
these deviations over the complete composition range obtained by fitting the volume 
to a cubic polynomial in x with coefficients determined by the values and gradients 
at the end points. Since the maximum deviation of a. (4.054 and 4.190 A at the end 
points) is less than lo-, 8, the limitations in accuracy of our calculations makes this 
conclusion somewhat tentative. 

There have been measurements of the relaxations of fluorine ions around an Mn 
impurity in KZnF, by the following techniques: EXAFS (LeblC 1982), EPR (Barriuso 
and Moreno 1984) and interpretations of crystal-field splittings of spectral lines of the 
impurity (Rodriguez and Moreno 1986). The three techniques provide results which are 
consistent within the quoted accuracies of the measurements. The EXAFS determination 
of LeblC (as quoted by Barriuso and Moreno) is the least uncertain, giving the Mn-F 
distance as (2.08 IfI 0.01) A which is (2.6 & 0.5) YO greater than the host Zn-F distance. 
Our calculations give the outward relaxation as 2.82 %, in excellent agreement with 
the measurements. 

Rodriguez and Moreno (1984) have also studied how the ratio rh/ro varies with 
temperature (rk is the Mn-F distance; ro the Zn-F distance) and found that it increases 
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Figure 3. Deviation of calculated average lattice parameter for KMn,Znl-,F3 from the 
value given by Vegard’s lattice parameter rule. 

with increasing temperature. In other words, as the lattice is expanded, the Mn-F 
distance increases at a faster rate than the host lattice parameter: in fact by more than 
twice the rate. By repeating our calculations with increased host lattice parameters 
we find the same trend but on a greatly reduced scale. Using the experimental lattice 
expansion coefficient, 1.5 x K-’ for linear expansion, quoted by Ridou et al (1984) 
we estimate from our calculations that (d/dT)(rb/ro) is around 1.4 x K-I whereas 
from Rodriguez and Moreno’s results we deduce (23 f 15) x K-I. Although 
the differencing involved in obtaining our estimate implies considerable uncertainty, it 
seems that our model potentials cannot produce an effect on anything like the scale 
suggested by the experimental measurements. While this is no doubt due in part to 
inadequacies of our model, it may be that some of the assumptions made in extracting 
experimental relaxations from &he raw data, for example the assumption that certain 
crystal field parameters are independent of temperature, need further questioning. 

4. Dynamics of cubic KMnF, and KZnF, 

The dispersion relations for the pure crystals obtained from our potential models have 
already been shown as figure 1. In this section we concentrate on the dynamical feature 
of particular interest in these perovskites, namely the mode softening at critical points 
as the temperature is reduced and any consequent phase transitions. 

The dispersion branches to be studied are the lowest-frequency branches in the 
[ l l l ]  and [110] directions, in particular the modes at the R,, and M,, points on the 
zone boundary in these directions. Measurements of the temperature dependence of 
the R2,-mode frequency in KMnF, have been made by Gesi et a1 (1972) and, more 
recently, in KZnF, by Lehner et a1 (1982), who also consider the M,, mode. To within 
experimental error the squared frequencies fall linearly with decreasing temperature 
in accord with the Landau theory for phase transitions. For KMnF, the R,, mode 
becomes unstable near the temperature of the transition from a cubic to a tetragonal 
phase at 186 K. In KZnF, the mode remains stable down to the lowest temperature, 
and the crystal does not undergo a phase transition. In both cases the MI, mode also 
softens as the temperature is reduced but this is insufficient for a phase transition to 
result. The dependence of the R,,-mode frequency on pressure has been reported by 
Ridou et a1 (1984). 
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The displacements in the soft R25 and M,, modes consist in both of cases of 
rotations of the F- octahedra surrounding the divalent ions around one of their 
fourfold axes. From the crystal structure the rotations of adjacent octahedra in the 
plane with the chosen fourfold axis as normal must have opposing signs. For adjacent 
octahedra along the axis the rotations have the same sign in the M,, mode and the 
opposite sign in the R25 mode. 

In figure 4 we show results of calculations with our potentials of the temperature 
and pressure dependences of the R,,-mode frequencies in the two pure crystals. For 
KMnF, the pressure dependence of the MI,-mode frequency is also shown. The 
temperature dependence is at atmospheric pressure and the pressure dependence at 
room temperature. We obtain first the variation in v2(a) with lattice parameter a 
within the quasi-harmonic approximation, that is, the same potential models are used 
but harmonic force constants are found from derivatives evaluated at changed atomic 
separations. When combined with the compressibilities of the crystals, this variation 
gives directly the pressure dependence of the mode frequencies at constant temperature. 
As discussed in the previous section in connection with volumes of formation, we use 
isothermal compressibilities calculated from the model potentials, taking account of 
the small variations in compressibility with changes in lattice parameter. These results 
are shown in figure 4(a) and 4(b). 

For KMnF, there are no experimental results for comparison. Our model predicts 
that under pressure both the R25 and M,, modes soften with the former becoming 
unstable at around 15 kbar (at room temperature). For KZnF, experimental results are 
available over a rather restricted range (Ridou et a1 1984) and are shown in figure 4(b) 
as a broken line. In this case the R,,-mode frequency given by our model is too high: 
there is some qualitative agreement between the theoretical and experimental pressure 
gradients but the model slope is too small by a factor of around 2.5. We believe that 
this error in the slope arises mainly as a consequence of the model frequency of the 
R2, mode at zero pressure being too high. If this frequency is brought down to the 
experimental value by suitable arbitrary adjustments to the potentials, the pressure 
gradient is found to be in good agreement with the experimental data. 

We now consider the temperature dependence of the R25 and M,, modes. If 
we assume that mode frequencies vary with temperature only via the temperature 
dependence of the lattice constant (i.e. we make the quasi-harmonic approximation) 
then estimates of v2(T) can be obtained by combining the above calculations of v2(a) 
with coefficients of linear thermal expansion. We have calculated these coefficients by 
minimising the free energy 

G ( r , T )  = q 5 0 ( r ) + c  
91 

(9) 

where the adjustment to the usual expression is required since our potentials are fitted 
at a reference temperature To (300 K). The results of our calculations of the linear 
expansion coefficient at 300 K with a sample of 1000 points in the (full) Brillouin 
zone are given in table 6 together with experimental determinations by Dormann et al 
(1977) for KMnF, and by Julliard (1974) (quoted by Ridou et al (1984)) for KZnF,. 
For both crystals our calculations give values which are only slightly greater than 
the measurements. The temperature dependences of the soft modes calculated in this 
way are shown as dotted lines in parts ( c )  (KMnF,) and ( d )  (KZnF,) of figure 4. 
The experimental results of Gesi et al (1972) for KMnF, and Lehner et a1 (1982) for 
KZnF, are shown for comparison. 
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Figure 4. Pressure and temperature dependences of squares of soft mode frequencies in 
KMnF3 (parts (a) and (c)) and KZnF3 (parts ( b )  and (d ) ) .  Experimental results are shown 
as broken lines and are from Ridou et al (1984) in (b) ,  Gesi et al (1972) in (c) and Lehner 
et al (1982) in (d ) .  Dotted lines in (c) and ( d )  show the effect of just the thermal expansion. 

That the agreement between these calculations and experiment is poor is not 
surprising. The investigations of soft modes in oxide perovskites (SrTiO, and LaAlO,) 
by Feder and Pytte (1970) and also by Bruce and Cowley (1973), using parametrised 
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Table 6. Coefficients of linear thermal expansion at 300 K for KMnF3 and KZnF3 in units 
of lop5 K-'. 

Experiment Model without Model with 
anharmonicity quartic anharmonicity 

KMnF3 1.6ja 1.98 0.72 
KZnF3 1.50+0.07b 1.58 1.26 

a Dormann et al (1977). 
Julliard (1974). 

models, showed that for an adequate description of mode softening it is essential to 
include the effects of third- and fourth-order anharmonicity in the potential. Leibfried 
and Ludwig (1961) have indicated that higher-order terms may be neglected. Here we 
shall restrict our investigations to the fourth-order anharmonic contributions. Apart 
from being simpler to calculate, they should provide the dominant correction. The 
calculations of Bruce and Cowley (1973) for SrTiO, indicated that corrections from 
the third-order anharmonicity were about half of those from fourth order and of the 
opposite sign. 

The fourth-order anharmonic correction is calculated from the fourth derivative of 
the potentials of interaction between ions. We assume that it is sufficient to consider 
only the short-range part and, in our models, this acts only between shells. Then, 
in lowest order of the anharmonicity (similar to first-order perturbation theory), the 
anharmonic contribution to the force constants 4ij acting between two atoms i 
and J is given by (see, for example, Cochran and Cowley 1967, Bruce and Cowley 1973, 
Bilz et al 1984) 

Here 4;' is the fourth-order potential expansion coefficient, and si is the shell displace- 
ment of atom i ;  the second term in equation (10) is a correction as in equation (9). 
The approximation made in this expression for the contribution to the self-energy is 
equivalent to approximating 

(4 !)-I (Si - S j ) 4  N +((Si - Si) 2 1  ) T 2 (Si - S j )  2 

in the fourth-order potential term. 
Apart from the temperature dependence of the phonon frequencies through the 

effect of thermal expansion there is now a temperature dependence via the displacement 
fluctuations of equation (10). In equation (9) one has thus to make the replacement 

We have carried out self-consistent calculations for fixed r and T using equation (10) 
to correct the phonon frequencies. In practice, we have followed an iterative procedure 
using 8000 q-vectors in the full Brillouin zone. 

The entire operation is then repeated for different lattice spacings, but keeping the 
temperature fixed, until a minimum in the free energy is found. This then yields the 
anharmonic phonon frequencies and the lattice parameter at the given temperature. 
Our results for the M,, mode in KMnF, and the R2, mode for both KMnF, and 
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KZnF, are shown as full curves in figures 4(c)  and 4(d )  and the corrected linear 
expansion coefficients at 300 K are given in the final column of table 6 .  The frequencies 
are now in much better agreement with experiment although, as anticipated, the fourth- 
order anharmonicity over corrects. If, as Bruce and Cowley (1973) found for SrTiO,, the 
third-order anharmonicity leads to changes in frequency of the opposite sign and about 
half the magnitude, excellent agreement with experiment would result. This is currently 
being investigated. In the calculations of the linear expansion coefficients, the addition 
of quartic anharmonicity again over-corrects the result found when anharmonicity is 
ignored. Here too it is to be expected that when cubic anharmonicity is included theory 
and experiment will be in better accord. 

5. Properties of KMnF, the tetragonal phase 

In this section we present some model predictions of the structural, elastic and vi- 
brational behaviour of KMnF, after it has undergone the phase transition, which we 
achieve by lowering the lattice parameter. The results are collected in the three parts 
of figure 5. 

5.1. Structural properties 

As mentioned in the last section the phase transition is caused by a rotation of the F- 
octahedron surrounding an Mn2+ ion. There is an accompanying tetragonal distortion 
with the lattice parameter along the axis of the F- rotation (the c axis) becoming 
larger than that for the other axes. In the three parts of figure 5 results are plotted 
against a parameter ii, which is the cube root of the volume per formula unit and 
therefore passes continuously into the single lattice parameter for the cubic phase. In 
the tetragonal phase the primitive unit cell contains two formula units. 

5 -  

4.11 4.13 4.15 4.17 
0 ( A ,  

Figure 5. Properties of KMnF3 as functions of a (a3 is the volume per formula unit): ( U )  

angle of rotation of F- octahedron and lattice parameters a and c/2; ( b )  elastic constants 
and ( e )  squared frequencies of soft modes. 
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We have developed a computer code which, from a given initial set of positions of 
the cores and shells of the ions, carries out relaxations of these positions (while keeping 
the volume of the cell constant) to find the equilibrium configuration of the cell at that 
fixed volume. This has been used to obtain the angle of rotation of the F- octahedron 
and the lattice parameters c and a over a range of values of zi as displayed in figure 
5(a).  The continuation of the lattice parameters into the cubic phase is indicated. 
The rotation angle varies continuously from zero at the phase transition, where it 
has a discontinuity in its first derivative characteristic of a second-order displacive 
phase transition. There are no experimental results with which these predictions can 
be directly compared although the measurements of the rotation angle as a function 
of temperature by Hirotsu and Sawada (1973) show a qualitatively similar behaviour 
near the transition. 

5.2. Elastic constants 

Calculations of the six elastic constants for crystals in equilibrium at a range of values 
of ii are shown in figure 5(b) ,  together with the cubic elastic constants from which they 
stem. (The slopes in the cubic phase provided the pressure derivatives given in table 
3.) In the tetragonal phase there is again no experimental work for comparison. Note 
that on passing through the transition to the tetragonal phase the elastic constants are 
shifted (as well as being split) as may be expected in a second-order phase transition 
since the elastic constants involve second derivatives of the energy. The centroids of the 
pairs of elastic constants stemming from either C,, or C,, are shifted to lower values 
while the opposite is the case for the pair from Cl,. 

As has been seen in table 2 the model predictions of the room-temperature (cubic) 
elastic constants show some disagreement with experiment. Similar discrepancies are 
to be expected in the tetragonal phase results. 

5.3. Soft modes 

The squared frequency of the modes in the tetragonal phase which stem from the R,, 
and M,, modes in the cubic phase are shown as functions of si in figure 5(c). The cubic 
phase part of the diagram is, apart from a compressibility factor, as in figure 4(a). 
Each of the triply degenerate cubic phase modes gives rise to a doublet (superscript a) 
and a singlet (superscript c) in which the F- vibrations are perpendicular to one of the 
a axes and to the c axis respectively. 

Of particular interest is the MT, doublet which shows an initial decrease in v 2  as zi 
is lowered from its value at the transition but then increases slowly after zi has fallen 
below about 4.125 A. This mode is believed to be responsible for a further phase 
transition at 78 K which Okazaki and Suemune (1961) and Shirane et al (1970) claim 
to be to a monoclinic phase although this has been disputed by Hidaka (1975). The 
fact that v 2  does not fall to zero for the relevant mode is consistent with the transition 
being first order. A determination of the value of zi at which this transition to another 
phase would take place would require calculations of the lattice free energies in the 
two alternative structures. 

6. Phase transitions in KMnF, :Zn and KZnF, :Mn 

In $3 some static calculations for dilutely substituted crystals were presented; here 
we investigate possible dynamical roles of the impurities. In particular we attempt to 
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answer the questions: does the presence of Zn in KMnF, inhibit the rotations of F- 
octahedra which cause the phase transition in the host, and does the presence of Mn 
in KZnF, induce these rotations? Our conclusions will necessarily be rather tentative. 

In our investigations we have used a variety of computational techniques, including 
the program mentioned in $5.1 for finding equilibrium configurations of unit cells with 
lowered symmetry and the HADES code already mentioned in $3. We have also used 
‘supercell’ methods to study collective instabilities, necessarily in a crystal in which 
the doping is highly concentrated and ordered on a superlattice. In the supercell 
method, which has been discussed by Sangster and Hussain (1985), mode frequencies 
and eigenvectors are found, by standard lattice dynamics techniques, for an enlarged 
periodic cell made up of repeated primitive cells of the host crystal with the substitution 
of a single centrally placed impurity. Relaxations around the impurity as well as an 
overall volume change determine the equilibrium configuration of the supercell. On 
enlarging the cell, the phonon branches of the primitive cell are folded back and some 
care has to be exercised in identifying the R,, mode. As well as considering the 
mapping on the resulting smaller Brillouin zone, the identification may be checked by 
treating a pure crystal supercell. 

We have used the HADES code to look for local distortions around impurities in 
two configurations. Firstly we substituted an Mn2+ ion for Zn2+ in cubic KZnF, and 
introduced a rotation of the F- octahedron surrounding the Mn2+ ion. (This procedure 
is similar to that adopted in studies of off-centre systems such as KCl:Li+.) The F- 
octahedron always relaxed back to the cubic configuration even when very high 
pressures were simulated by reductions in host lattice parameters. From this we 
conclude that if the host is constrained to be cubic at a distance from the impurity 
(i.e. on the boundaries of the explicitly treated region of around 200 atoms in the HADES 
calculations) then local rotations do not take place at all. Secondly we investigated a 
KMnF, host crystal in the tetragonal phase initially with a lattice parameter li only 
slightly below that required for the cubic to tetragonal transition and with a Zn2+ 
substitution. The local F- octahedron showed some tendency to align with the axes 
defined by the neighbouring K+ cuboid but there was no locally cubic region. On 
repeating this calculation with decreased a, and therefore larger rotations of the F- 
octahedron in the host, a similar tendency was found, that is around the Zn2+ impurity 
the rotation was partially quenched, and it could be seen that this quenching decreased 
rapidly with distance from the Zn2+ ion. One concern with this type of calculation 
is that constraints on the structure of the crystal remote from the impurity (the so- 
called region I1 of HADES calculations) may impose incorrect symmetries around the 
impurities. In these KMnF, :Zn calculations such constraints would prevent the Zn2+ 
impurity ‘seeding’ a transition of the host to the cubic phase. As a further example, 
if a KMnF, crystal is constrained to be cubic at a lattice parameter well below that 
at which the transition takes place and a ‘seeding’ rotation of an F- octahedron is 
introduced, relaxations again restore full cubic symmetry. 

It was to allow for collective relaxations that we proceeded to supercell investi- 
gations. Due to computational limitations we were unable to treat supercells larger 
than 4 x 4 x 4 primitive host cells. In all cases we made adjustments to the supercell 
volume to take account of the defect concentration; this is particularly important for 
the smaller cells. We examined the displacements of F- ions in the eigenvectors for 
R,, vibrations in KMnF,:Zn in the cubic phase. For small supercells we find that the 
displacements of F- ions around the Zn2+ ions are smaller than those near the zone 
boundary. The effect is enhanced in larger supercells but, from our limited evidence, it 



7816 R R Becher et a1 

appears that even in dilutely doped systems there will always be some participation of 
the F- ions which are immediate neighbours of Zn2+ in the mode. This is consistent 
with the above calculations of static relaxations in the tetragonal phase. 

0 0.1 0.2 
X 

Figure 6. Transition pressures for KMnl-,Zn,F, (0 I x 5 0.25). 

We also found one rather surprising result from our supercell calculations for 
KMn,-,Zn,F, with x I b :  If the supercell lattice parameter is reduced until the 
R,, frequency becomes imaginary and if this reduction in lattice parameter from 
the appropriate equilibrium value is interpreted as a transition pressure, using the 
compressibility for the composite crystal in each case, we obtain the curve shown in 
figure 6. The large increase in the transition pressure at the high end of the range is to 
be expected, since for x = 1 there is no transition, but the initial dip is unexpected. A 
possible interpretation of this effect is that the doping lowers the average interatomic 
separations and, since it is reductions in this distance which are eventually responsible 
for the pressure-induced phase transition, less pressure is required to achieve the 
transition. While the possibility cannot be ruled out that this effect is a spurious 
consequence of the artificial periodicity of defects, it should be noted that in the range 
of x for which the effect is found, the supercells are relatively large and there will be 
little interaction between defects. 
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